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A generalization of the previously proposed non-iterative matrix method (NIMM)
for constraint molecular dynamics simulations is presented. The resultant generalized
version of NIMM (gNIMM) makes possible the constraint force calculation with
exactly the same procedure (subroutine) for various “Verlet equivalent” integration
schemes with the same fourth order of the time step as the constraint error order.
This gNIMM needs only the latest available configuration information and does not
need extra memory and restart file size to store the one-step earlier configuration as
in a previous extension of NIMM by J. Slusher and P. Cummings (19@6, Sim.

18, 213). The method is tested by simulations with systems of fullerenes, a protein,
etc., and is three to five times faster than SHAKE for solving the constraints even in
such rather large molecule simulationse) 2001 Academic Press
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1. INTRODUCTION

Constraint dynamics places constraints on some intramolecular degrees of freedom,
allowing integration time steps larger than those possible in ordinary dynamics. Since
introduction of the algorithm SHAKE [1] in the late 1970s, constraint dynamics simulatior
have been done by mostly applying this SHAKE algorithm. Although application of SHAK
is generally successful, efforts have been made to improve the constraint algorithm ir
computational efficiency and parallelization. Some examples are the EEM method ba
on Gauss’s principle of least constraint proposed by Edeead) [2]; LINCS [3], which is
similar to the EEM, but solves the same non-linear constraint problem as SHAKE inste
of derivatives of the constraint as in the EEM; and NIMM (non-iterative matrix methoc
by Yoneyaet al. [4]. NIMM was recently extended by Slusher and Cummings [5] from it
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original combinations with Verlet and leap-frog to combinations with velocity Verlet an
Beeman time integration schemes.

In this article, we present a more generalized extension of NIMM for so-called “Verl
equivalent” time integration schemes. We evaluate its computational efficiency and
bustness compared to SHAKE with test simulations of fullerenes, a protein, rigid pla
benzenes, etc.

2. CONSTRAINT ALGORITHMS

In this section, we show the basic idea of NIMM in comparison with SHAKE. We discu
only the bond length constraint because the other constraints, e.g., bond angle, are forr
the same as that of bond length.

2.1. Constraint with SHAKE

Let us assume there aiebonds in a molecule;, x; are the coordinates of two atoms
which form thenth bond of this molecule ard}, is its fixed bond length. The total constraint
condition of a molecule can be expressed as

xn®) =r2®)—d>=0 (hn=1-N),
where

M =x M) —x;).

In SHAKE, the atomic coordinates are iteratively reset to fulfill the following equation &
aresult:

xn(t+ At) + O(e) = 0. D

The pointof SHAKE is that the constraint force is calculated to fulfill the constraint conditic
(with user-specified error toleraneg at not the current, but the next time steg At. It

is known, that the time integration with constraint force which is calculated to fulfill th
constraint condition at the current time step results in large drifts of constrained bc
lengths [1]. This is because the time integration scheme itself has a limited accuracy anc
accumulation of integration error causes the drifts. SHAKE effectively suppresses this c
by the point above. The method proposed by Edeéad.[2] has no such error suppressing
function itself and then it needs an independent error handler.

The constraint forcé’ is expressed as follows using the Lagrange multiplier

1 N N
i =35> mn®Vioxn® = D An(Ori(0). @)
n=1 n=1

Equation (2) means that the calculation of constraint force is equivalent to the calculat
of the Lagrange multipliers. If we use this constraint force equation (2) in the constra
condition (1), it results in a non-linear (quadratic) equation albhguand then, needs an

iterative procedure to solve,. This is the reason why SHAKE becomes an iterative methoc
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2.2. NIMM and Its Extension

NIMM is a constraint algorithm which can only be combined with (up to) fourth erro
order time integration schemes, e.g., various “Verlet equivalent” time integration schern

The difference between NIMM and SHAKE is the equation which is solved in SHAKI
(Eqg. (1)) and the equation which is solved in NIMM,

xn(t + At) + O(AtYH = 0; (3)

i.e., the difference between them is simply the specification of the constraint errors. T
means that the point which suppresses the constraint error accumulation is considere
be the same in both SHAKE and NIMM. In SHAKE, the constraint error toleraricea
user-specified parameter. On the other hand, the constraint erroi@fdét) in NIMM is

the error order of the combined time integration scheme. In constraint dynamics, these e
orders of the constraint condition and time integration are not independent as in SHA}
but related to each other. Itis shown that the error orders of the constraint condition and t
integration should be on the same order with the simple analysis in the original presenta
of NIMM [4]. The major difference when solving Eq. (3) instead of Eq. (1) to obtain the
Lagrange multipliers is the former can be solved non-iteratively because of the quadr
term about.,, is omitted agD (At*) terms, in contrast to the latter which must be solved by
the iterative procedure. This is the reason why NIMM becomes non-iterative and it must
combined with (up to) fourth error order time integration schemes.

In the original presentation of NIMM [4], the combinations with Verlet and the leap
frog time integration scheme were explained. Neither evaluates the atomic coordinates
velocities at the same timing and this causes inconvenience in some applications. Slu
and Cummings [5] extended NIMM, combining it with the velocity Verlet and Beeman tim
integration scheme in which the coordinate and velocity are evaluated at the same tim
Their actual algorithm is shown with an example of the velocity Verlet in

X(t + At) = X(t) + X(H) At + %S&(t)At (4)
X(t 4+ At) = X(t) + %{X(t) + X(t + At)}AL2 (5)

Slusher and Cummings proposed the following procedure which evalpates- 2At)
with an equation obtained by substituting Eqg. (5) into Eq. (4) and shifting one timastep

Xn(t 4+ 2A0) + O(AtY) = {r(t + A + Fn() A2 — d2 + {ra(t + Ab)
+ Fn(D) AL} - {Fn(t) + 2Fn(t + AD}AL2 = 0. (6)

Equation (6) utilizes one time step earlier valuig&), i',(t) which are usually not avail-
able at the timing of the constraint force evaluation because these are overwritten v
the corresponding latest values. As a result, we need extra memory area for these e:
step values to calculate the constraint force using Eqg. (6). On the other hand, the orig
NIMM for the leap-frog only utilizes the latest available valugg), f(t — At), in°(t) at
the timing of the constraint force evaluation. Analogously, when we restart the constre
dynamics run from the previous configuration which is stored in a restart file, the file wi
the same contents as the non-constraint run (), X(t — At) is enough in the original
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NIMM, whereas the file should additionally contain the one step earlier values in the cas
Eq. (6).

3. GENERALIZED NIMM

3.1. Alternative Extension of NIMM

As in the previous section, the NIMM extension for the velocity Verlet by Slusher ar
Cummings needs extra memory and restart file size, which the original NIMM for the lee
frog does not. This problem can be solved with an alternative extension based on syster
generalization of NIMM in the following.

Let us begin with that the “Verlet equivalent” schemes are derived from the original Ver
scheme with the velocity definitions [6]

X(t 4+ aAt) — X(t + (¢ — D AL)

X(t + (¢ — 1/2)At) = i

)
The corresponding rewritten Verlet form is
X(t + (@ — 1/2)At) = X(t 4 (@ — 3/2)At) + X(t + (@ — DAL)AL + O(AL3).  (8)

The cases: = 1, 3/2, and 2 correspond to the leap-frog, the position Verlet [8], and tt
velocity Verlet integration scheme, respectively. From these equations, we get
X(t 4+ aAt) = X(t + (@ — D AL) + X(t + (« — 3/2) At) At
+X(t + (@ — DAY AL? 4+ O(At?).
This means the error order of the coordinate integration is the same as that of original Ve
i.e., O(At*). We will show the corresponding NIMM formulation in the following.
First, the velocity Verlet procedures for two time steps are listed in a different form wi
Egs. (4), (5) as follows:
X(t + At/2) = x(t) + X(t)(At/2)
X(t + At) = x(t) + X(t + At/2)At
X(t 4+ At) = X(t + At/2) + X(t + At)(At/2)
X(t 4 (3/2)At) = X(t + At) + X(t + At)(At/2)
X(t 4+ 2At) = X(t + At) + X(t + (3/2) At)At
X(t 4+ 2At) = X(t + (3/2) At) + X(t + (3/2) At)(At/2).

By substituting the first equation of the second step into the last equation of the first s
we obtain the following:

X(t + (3/2)At) = X(t + At/2) + X(t + At)At (+O(At3)).

This is Eq. (8) withe = 2 and Eq. (7) withx = 2 corresponds the second equation of the
second step. Substituting the above into this second equation of the second step gives

X(t + 2At) = X(t + At) + X(t + At/2)At + X(t + At AtZ (+O(AtY).
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Evaluatingy, (t 4+ 2At) with this equation makes the constraint conditiontfer 2At
xn(t + 2At) + O(AtY) = Q3(t + At) — d2 + 20,(t + Al) -F(t + ADAL> =0, (9)
wheregn(t + At) is defined as
an(t + At) = rp(t + At) + Fn(t + At/2)At.

Equation (9) utilizes only the latest available values at the timing of the constraint for
evaluation (between the second and the third equations of the first time step), and doe:
require the one step earlier values as in Eq. (6).

Next, the restart file size is discussed. Usually, the restart file contains atomic coordin:
and velocities and these are actualit + At) and x(t + At) in the case of the two-
step expression of the velocity Verlet above. In this case, at the first step after res
X(t + (3/2) At) cannot be calculated due to a lackxgf + At) which includes constraint
force. To solve it, the values contained in the restart file should be the latest values wt
can be calculated at the last time step. In the case of the velocity \etet, At) and
X(t + (3/2)At) should be stored as a restart file and a continuous run becomes poss
using such a restart file without extra restart file size.

3.2. Generalization of NIMM

In the previous section, the NIMM was extended to the combinations with the veloci
Verlet. Extension to the combinations with the position Verlet is also possible in a simil
manner. We found that the equations to obtain the constraint force take the general for

Xn(t +aAt) + O(AtY) = gi(t + (@ — DAL) — d3
+ 200 (t 4 (@ — DAL - F(t + (@ — DA A2 =0 (10)
On(t + (@ — DAL = rp(t + (@ — DAL) + Fo(t + (@ — 3/2) At)At,

where

a=1 for Verlet usingn(t — At/2)At =r,(t) — rp(t — At)
=1 for leap— frog
= 3/2 for position Verlet

=2 for velocity Verlet.

This means exactly the same subroutine (to solve Eq. (10)) can be used to calculate cons
force for all these “Verlet equivalent” time integration schemes (V@tnt*) constraint
error order). Corresponding constraint force is obtained by Eq. (2) as follows:

C 1 .
fit+ (@ — DAt = > Z?»n(t + (@ = DAD Vi @t@-pan xn(t + (@ — D AL)

n=1

N
= Anlt+ (@ — DADI(E + (@ — DAL). (11)
n=1
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Here, the Lagrange multipliex,(t + (¢ — 1)At) is actually obtained by Eq. (10), i.e.,
Not xn(t + (@ — 1 At) + O(At* = 0 but xn(t + aAt) + O(At*) = 0, and then can be
considered as., (t + aAt). Corresponding to this, if we evaluajg in Eq. (11) with
Eqg. (10), we get

N

1 ) dq,
ot +@-DAn =53 i+ aAt)a—q'ti (tH@-Dat Xn(t + e At)
n=1 T

N
=) " At + aAD{Gy(t + (@ — DAL +F(t + (@ — DAD AL},
n=1
(12)

Here, thef(t + (@ — 1) At)At? term of the above equation is omitted @§At*) term in
the calculation of the Lagrange multipliers with Eq. (10). In the combination of Egs. (1
and (10), the matrix to solve the Lagrange multipliers becomes symmetric, whereas
corresponding matrix is asymmetric if we combinate Egs. (11) and (10). Symmetric ma
solvers are generally faster than asymmetric ones and for this reason, the former combin
is practically preferable in gNIMM.

4. TEST SIMULATION RESULTS

4.1. Error Orders

In the previous section, NIMM was generalized to various “Verlet equivalent” tim
integration schemes. In this section, we checked this generalized NIMM (gNIMM) wi
simple test simulations. The tested system wasral3®ane molecule (only bond constraint
was applied) system under a periodic boundary condition which is the same as in the
of the original NIMM paper. Figure 1 shows the dependency of R.M.S. constraint er
((x2)Y/? evaluated with Eqg. (10) angl) stands for average over bonds and time steps) o
time integration stept for various “Verlet equivalent” schemes with the same subroutin
(results of the original NIMM are also shown).

The constraint errors are the value at the timing of the constraint force calculations
each integration scheme, e.g(t + At) for the leap-frogy (t + (3/2) At) for the position
Verlet. The gNIMM constraint errors of all these “Verlet equivalent” integration scheme a
indistinguishable and alD(At%).

4.2. Timing Results

Then, to compare NIMM with SHAKE in its computational efficiency, we did test sim
ulations of various molecular systems.

The first one was a system of 64 liquid crystal 5CBnipentyl-4-cyanobiphenyl)
molecules [9] (total: 1216 atoms including united atoms) under a periodic boundary c
dition at isotropic states. A time step of 2fs was used in a total of 200 steps of const
energy simulations with bond length constraint. The timing results were obtained by Hew
Packard HP9000/735 workstation and they are summarized in Table 1 with the correspt
ing R.M.S. constraint errors.

Inthe constraint force calculation part, the CPU time of gNIMM is almost the same as !
of NIMM and about five times faster than SHAKE (note that the current implementatic
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FIG. 1. Constraint error dependency on time step size.

of these constraint routines is not extensively tuned). In these test simulations, R.M
constraint errors and energy fluctuations are the same order of magnitude for all meth
The CPU times of gNIMM with different time integration schemes are negligibly differer
because all were calculated with exactly the same subroutines.

The extended run (with gNIMM and leap-frog) up to 50,000 time steps on this 5CB syst¢
was done to check the long-term stability. In Fig. 2, we plot the instantaneous fluctuatic
of the energy about the initial value, i.&AE(t)/E(0) = (E(t) — E(0))/E(0) [8], with the
corresponding result with SHAKE. The total energy was conserved with 0.5% fluctuati
and R.M.S. constraint errors were stably kept on the order of A0

TABLE 1
CPU Seconds for the 5CB System (200 Steps)

Const. Integration Const. Total Const. error
method method CPU CPU (x2)?
SHAKE leap-frog 7.38 67.9 3x10°
NIMM leap-frog 1.20 63.7 5 x 10°
gNIMM leap-frog 141 62.8 D x10°
gNIMM pos. Verlet 1.38 66.0 Bx10°

gNIMM vel. Verlet 1.43 63.0 5 x 10°
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FIG. 2. Instantaneous fluctuations of the energy for gNIMM/leap-frog (black line) and SHAKE (gray line).

Next, we run a test with a rather large molecular system, e.g., the 32-fullerene (
molecules [10], under a periodic boundary condition and a protein BPTI (Bovine Pancre:
Trypsin Inhibitor [11])in vacuo.The time step of 2fs was used and only bond length
were constrained in both C60 and BPTI molecules, but C60 actually became rigid with 1
constraint. Corresponding timing results (only the case with leap-frog) are listed in Table
and 3, respectively.

As in the tables above, gNIMM (again almost the same as NIMM) is 4.5 and 3.2 tim
faster than SHAKE (with the same level of constraint errors) in the C60 and BPTI systel
respectively. It has been reported that NIMM is eight times faster than SHAKE with
water molecule system [12], so the computational efficiency of NIMM/gNIMM relative t
SHAKE might be higher in smaller molecules. However, NIMM/gNIMM is proved to be
faster than SHAKE even with rather large molecular systems, i.e., C60 and BPTI. Moreo
NIMM/gNIMM can be easily accelerated by using a tuned ready-made matrix solver fo
specific machine.

We already showed (Fig. 1) that NIMM/gNIMM will work with a rather large time step
size (with sacrifice of the constraint error which is consistent with the time integration er

TABLE 2
CPU Seconds for 32 Mols. of C60 (100 Steps)
Method Const. CPU Total CPU (x2)Y?
SHAKE 28.0 524 17 x 10°°
NIMM 5.45 502 33x 107

gNIMM 6.22 503 28 x 1077
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TABLE 3
CPU Seconds for a BPTI (200 Steps)

Method Const. CPU Total CPU (x2)v?

SHAKE 5.30 155 B x 10
NIMM 1.40 154 53x 10°
gNIMM 1.67 149 25 x 10°®

of the atomic coordinates) with which SHAKE will not converge. To look at an anothe
aspect of robustness of gNIMM, we tested it with a system of 32 molecules of planar ri
benzene. The system has been reported (Takeuchi [13]) as one in which SHAKE will f
Benzene is modeled with six united atoms, and all six bond lengths and three extra psel
bond lengths (these equally divide the benzene hexagon into six triangles) are additior
constrained to make benzene planar rigid. Actually, SHAKE fails within a few tens of tin
steps even with a small time step of 0.04fs, whereas gNIMM did not fail after five thousa
steps (we did not check the actual limit). The gNIMM has been applied to the simulatic
of various kinds of molecules (mainly liquid crystals [14]) up to more than a million tim
integration steps without any numerical instability.

So far, we have stated the positive aspects of the gNIMM, but there are still subje
for further discussion. For example, the geometric properties of time integrators have b
shown to be important in the long term stability of simulations [15]. It has been shov
that, when the iteration is carried to ideal convergence (gt + At) = 0), SHAKE in
combination with Verlet is symplectic and time reversible [16]. The non-ideal convergen
of the gNIMM (i.e., xn(t + At) + O(At*) = 0) possibly breaks this symplecticness, but
as yet this is not clear. That is one of the subjects for a future study.
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